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The relationship between fluctuating irreversible thermodynamics and theories 
of irreversible processes which include the thermodynamic fluxes as independent 
variables is explored. It is shown that the usual fluctuating linear theory of 
irreversible thermodynamics is a contraction of the extended theory. This 
contraction contains non-Markovian effects dependent upon the relaxation 
times associated with the thermodynamic fluxes. In the limit that these relax- 
ation times are small, the extended theory is shown to be equivalent to the usual 
fluctuating thermodynamic theory. A critique of the extended theories is given 
from the point of view of the mechanistic statistical theory of irreversible 
processes. 

KEY WORDS: Fluctuations; extended irreversible thermodynamics; flux 
relaxation. 

1. INTRODUCTION 

Recently there have appeared a number of related theories which purport 
to extend or generalize the usual theory of irreversible thermodynamics. (1-7) 
The usual theory is due to Onsager (8~ and uses the extensive variables as 
the basic thermodynamic quantities. These variables are the masses, local 
momentum, and internal energy just as in the classical theory of equilib- 
rium thermodynamics. In the Onsager theory these variables completely 
characterize the condition of a system. Consequently state functions, like 
the entropy and free energy, depend only on the values of the extensive 
variables. 
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Time dependence is introduced in the Onsager theory through the time 
derivatives of the extensive variable, which are referred to as the thermody- 
namic "fluxes. ''(9) Near equilibrium these are linearly related to thermody- 
namic "forces" which, themselves, are written as linear functions of the 
deviations of the extensive variables from their equilibrium values. This 
results in linear differential equations, first order in the time, which can be 
solved to obtain the time-dependent values of the extensive variables. The 
extension of that theory to include fluctuations was made by Onsager and 
Machlup, (9-12) and it, too, relies solely on the mass, momentum, and 
energy as the independent variables. 

Extended irreversible thermodynamics, on the other hand, is based on 
a physical picture which goes back at least to Maxwell,(13) who introduced 
viscoelastic relaxation times into kinetic theory. Maxwell's idea was that 
when a fluid is set into motion, a relaxation time ~ must elapse before the 
frictional forces develop their Newtonian form. For gases Maxwell calcu- 
lated this time to be the order of a molecular collision time. That such 
effects are universal has been known for some time, although only recently 
has there been an explicit attempt to incorporate them into a thermo- 
dynamic-like formalism. 

In its simplest form the extended theory adds to the list of independent 
thermodynamic variables the thermodynamic fluxes, exactly doubling the 
number of independent variables. In these theories the extensive--also 
called conserved--variables serve to define the fluxes--the nonconserved 
variables--through their time derivatives. Closure is obtained by writing 
phenomenological equations for the time derivatives of the fluxes which 
depend both on the extensive variables and their fluxes. Because the state 
of a system is now conceived to depend both on the conserved and 
nonconserved variables, the entropy of the system is taken to depend on 
both sets of variables. 

The most convincing justifications for extending irreversible thermody- 
namics in this way are based on moment methods of solving the Boltzmann 
equation. (k6,7J4) Here an ansatz is introduced that the probability density 
depends on both the conserved variables and their fluxes. This is imple- 
mented self-consistently, much as in the Chapman-Enskog procedure, and 
yields by definition an entropy which depends on the extensive variables 
and the fluxes. 

It is our purpose in this note to explore the relationship between the 
fluctuating linear theory of irreversible thermodynamics and the recent 
extended theories. In the next section we introduce a version of the 
extended theories and show that it can be reduced to a description 
depending only on the extensive variables. The resulting equations are of 
the Mori type (15~ with memory kernels decaying on the time scale of the 
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flux relaxation time, ~-. This time scale is a very rapid one in simple 
molecular fluids, and we take advantage of that fact to show that as ~-~ 0, 
the contracted theory reduces to the usual fluctuating theory of Onsager. 
These results are illustrated for a ternary system undergoing diffusion. To 
provide a perspective for these results we give a critique of the extended 
theories in the final section, comparing the philosophy involved in this 
approach to the hierarchy picture of the mechanistic statistical theory of 
irreversible thermodynamics. (16-19) 

2. CONTRACTION OF THE EXTENDED THEORY 

The fluctuating linear theory of irreversible thermodynamics depends 
only on the extensive variables. For definiteness we write these as the 
column vector n with components n i and consider the deviations from the 
equilibrium value e~ i = n i -  nie or a. In the Onsager theory these form a 
stationary, Gaussian, Markov stochastic process which satisfies the Lange- 
vin-like equations (9-12) 

d a / d t  = LX + f (1) 

Since for simplicity we consider only dissipative processes, L is a positive 
definite and symmetric matrix, X is the vector of thermodynamic forces, 
and the vector f is the purely random Gaussian component of the time 
derivatives. It satisfies O2'17) 

(f(t)) = 0, (f(t)fT(t')) = 2 k B L S ( t  - t ') (2) 

where ke is Boltzmann's constant, the angular brackets represent an aver- 
age over an aged (equilibrium) ensemble, and the superscript T represents 
the transpose. For our purposes it is convenient to have the stochastic 
equations written entirely in terms of a. Recalling that the entropy in the 
usual theory depends only on the extensive variables, i.e. S(n), we have 

e 

x = ( a 2 s / a n a . )  = (3)  

Thus Eq. (2) becomes 

d~/dt = H a  + f (4) 

where H = L S .  This theory has been widely explored and is in excellent 
agreement with many experiments. 

Since several versions of the extended theory have been proposed, (~- 7) 
we settle here on a simplified formal structure for extended irreversible 
thermodynamics which is general enough to include the special case of the 
Maxwell-Cattaneo relaxation equations. (2~ In this theory the independent 
variables include both t~ and d a / d t  =--oz. Thus the entropy is written as 
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S(a ,  &) and the equations governing their time dependence are written as (3) 

d,~/dt  = fi (5) 

d f i / d t  = ~ - ' ( L X -  f i ) =  4 - ' ( H a  - fi) (6) 

In Eq. (5) 4-1 is the relaxation matrix for the fluxes. We shall assume that 
the eigenvalues of ~ are all positive. Clearly Eq. (6) describes a relaxation of 
the fluxes to the form given in the Onsager theory. 

Since we are interested in comparing the extended relaxation equations 
in Eqs. (5) and (6) with the Onsager-Machlup theory, we must settle on a 
stochastic interpretation of the extended equations. According to custom- 
ary ideas in statistical mechanics, the system described by the independent 
variables a and fit is represented stochastically by an ensemble of similarly 
prepared systems. As we are concerned in this paper only with systems that 
are close to equilibrium, the ensemble of interest is an aged one in which 
the average values of a and fi will be independent of time. Such an 
equilibrium ensemble possesses the property of stationarity, that is, not only 
are single-time average values constant, but multiple time averages depend 
only on time differences. To examine the dynamics of the ensemble, we 
select from it subensembles each member of which has precisely deter- 
mined values of a = a(0) and fit = &(0) at an arbitrary initial time t = 0. 
Such a subensemble is conditional on the values of a(0) and fit(0), which 
are themselves distributed in the complete ensemble with the stationary 
single time distribution, Wl(a(0), fi(0)). If we follow this conditional ensem- 
ble, our initially precise knowledge of the values of a and fi is lost due to 
the effect of molecular motion. However, we can still examine the condi- 
tional average values of a and fit as time proceeds. In this way we obtain 
functions a(a(O), fit(O), t) and fi(a(0), fi(0), t) with the property that a(a(0),  
fi(0), 0) = a(0) and fit(a(0), fit(0), 0) = fi(0). In this sense, these conditional 
averages of a and fi are "deterministic," although they still depend on the 
random variables a(0) and fi(0). In a similar manner two-, three-, etc. time 
conditional averages are determined by two or more sets of prior values of 
a and fi. 

Returning to Eqs. (5) and (6), we see that they are first order in the 
time so that their solutions depend only on the initial values of a(0) and 
fi(0). Consequently, the only possible interpretation for these equations is 
that they describe the conditional average values of a and fi. Any random- 
ness will arise, then, only from the randomness in the distribution of initial 
values, Wl(a(0),fi(0)), in the equilibrium ensemble. In the usual discus- 
sions of extended irreversible thermodynamics, the randomness of the 
initial values is not exploited; however, as we plan to eliminate the 
variables fi and compare with the Onsager-Machlup theory, the stochastic 
nature of the equations cannot be suppressed. Because Eqs. (5) and (6) are 
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linear, it would be consistent to assume that the a, fz process is also 
Gaussian and Markov. ~2) However, this is not necessary, and we will not 
do so. 

To see how Eqs. (5) and (6) are related to Eqs. (2) and (4), we solve for 
ti(t) using the second form of Eq. (6). Substituting the result into Eq. (5) 
gives 

dadt = e x p ( -  t~-l) t i(0)  + f0 ' e x p [ - r  t ' ) ]?- lHa( t ' )d t '  (7) 

Equation (7) is a contraction of the conditional average equation for a and 
t~. However, in the contraction it has become a true stochastic differential 
equation since now the time derivative of a depends explicitly on the 
statistical distribution of ~i(0). Equation (7) is non-Markovian because of 
the appearance of the memory kernel in the second term. ~21) Indeed Eq. (7) 
has the form of the exact stochastic equations of motion for a derived by 
Mori, ~15~ although clearly (7) is not exact as it is based on the phenomeno- 
logical Eq. (6). Nonetheless, Eq. (7) shows that there exists a statistical 
description based only on the extensive variables which can be derived 
from extended irreversible thermodynamics. Furthermore, the stochastic 
process for a(t) is non-Markovian and completely determined by the 
statistical distribution of a(0) and d(0) in the equilibrium ensemble. 

To show how Eq. (7) is related to Eqs. (2) and (4) we take advantage of 
the difference in relaxation rates, ~-1 and H. For example, for chlorine gas 
at room temperature the viscoelastic relaxation time r is estimated ~7) to be 
10-i0 sec, whereas the relaxation time corresponding to H [i.e., (pk2) - 1] is 
at least 600 times longer for disturbances with wave vectors k in the 
hydrodynamic regime. Thus the fluxes are rapidly changing variables, and 
as a consequence, will appear only as small, rapid fluctuations in Eq. (7). 

To make this last statement precise, we write ~ = ~-?* and take the limit 
~-~ 0, with ~* fixed. In other words, we introduce a rapid time scale for the 
relaxation of the fluxes. Since ~* has positive eigenvalues, it is easy to show 
that 

lira exp[ - ~ - l ( t  - t ')] ~ - l  = 216(t - t') (8) 
"c-->O L 

where I is the identity matrix for the a variables. Thus, in this limit, 

da/d t  = Ha + f(t)  (9) 

where 

f(t)  ------ lim exp( - r  it) t~ (0) (10) 
7-~ '0  

Comparing Eq. (9) to Eq. (4) it is clear that in this limit Eqs. (5) and (6) will 
reduce to Eq. (4) if f(t) as defined in (10) satisfies Eq. (2). 
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It is easy to verify the first condition in Eq. (2), namely, ( f ' ( t ) )= 0, 
since in the stationary ensemble (6z(t)) = (ti(0)) = 0. To verify the second 
condition is somewhat more subtle. Recall that the two-time average in Eq. 
(2) requires that the unconditioned stochastic quantity f'(t) be known at two 
different times. Because of the stochastic interpretation given to Eqs. (5) 
and (6), the quantity 

F0(t ) = exp( - ~-it)&(0) (11) 

which appears in Eqs. (7) and (10), must result from the conditional 
average of some random variable. If we call that variable F ( t )=  F(a,  fz), 
then it follows that F0(t ) is the average of F(t), conditioned on the values 
a(0) and &(0) at t = 0 [although Eq. (11) shows the average is independent 
of a(0)]. This means that Eqs. (5) and (6) give us only a conditional 
knowledge of F(t), and, similarly, only conditional knowledge of the 
random force, f'(t), in Eq. (9). Nonetheless, we can still calculate the 
two-time average of fit) using its conditional value in Eq. (10) and the 
single-time probability density, Wl(a(O), ~i(0)). 

To see how this is done, consider first the two-time average of F(t), 
which is defined by (F(t)Fr(t '))2 = f F(a, &)Fr(a ', 6z') W2(a , fit, t; a', &', t') 
da da da' d(~', where W 2 is the two-time (unconditional) probability density. 
From the condition of stationarity in the equilibrium ensemble, this can be 
reexpressed as 

(F(t)Fr(t ' ))2 = (F(0)Fr(t  ' -  t ')) 2 (12) 

Next the conditional probability density is introduced through its defini- 
tion: 

W2(a(0), a(0), 0; , ' ,  a', r - t) = w l ( a ( 0  ), a(0))P2(,~(0), a(0) l ,,', a', c - t) 

Substituting this into the integral which defines the right-hand side of Eq. 
(12) leads to 

<F(0)Fr(t ' - t)> 2 = fFo(0)Fo(t '  - t) W,(a(O),a(O))  da(O) d~i(O) (13) 

where 

-- t) = f F ( a ' ,  &')P2(a(0), &(O) a', oz', t" - t) da' d&' F0(t' 

the conditional average of F(t), and the delta function initial condition on 
P2 was used to write F0(0 ) = F(a(0),&(0)). Combining Eqs. (12) and (13) 
then gives 

(F(t)Fr(t ')>2 = (Fo(0)FoT(t ' -  t)> 1 (14) 

where the subscript 1 represents the single-time average defined by the 
right-hand side of Eq. (13). 
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Equation (14) makes it clear that any two-time average can be gotten 
from the conditional average and the single-time average. This result 
permits us to find the two-time average of the unconditioned random force, 
f'(t), even though it is given only conditionally in Eq. (10). To do this, we 
first determine the two-time average of F(t) using Eqs. (I 1) and (14). This 
gives 

(r0(o)rr(  t ' -  0)1 = (~ i (o)~r (~  ( t ' -  t)(~r) -1] (15) 

Returning to Eq. (10), it then follows that 

(f(t)f'r(t ')) = lim [ ( a  (0)a r(0))~'~* r] 
"r--~O L 

• {r 

= 2 7 6 ( t  - t ') (16) 

where Eq. (8) has been used and 7 is the matrix defined by 

lim (17) (a(0)a  *T= v 

Notice that the initial correlations of the fluxes, (~i(0), ~ r(0)), will depend 
on the relaxation time z. Thus the right-hand side of Eq. (17) is not 
identically zero. 

There are several ways to obtain an expression for ~,, all of which yield 
the same result. The simplest is to recall the Green-Kubo formula for the 
transport coefficients L,j. As Zwanzig has shown (22) 

lim lim ( ' ~  dt exp(-pt)(a(0)Oz r ( t ) )  = k ~ L  (18) 
p ~ 0  ~ 0  ..tO 

where ~ is a time scale parameter characteristic of rapidly relaxing molecu- 
lar processes. Here we take ~ = ~-. Using Eq. (6) one finds that as ~- = ~ ~ 0, 

(& (0)~i r( t))  ~ (ti(0)~ r(0))exp [ - t(~-1) r] (19) 

For such a correlation function the order of the limits in Eq. (18) is 
irrelevant. Thus Eqs. (I 8) and (19), after integrating and taking the p limit, 
yield 

k ~ L  = lim (fiz(0)fiz r(0))T,~*r= 7 (20) 
"r ~.'. 0 

Finally combining Eqs. (19) and (16) gives 

(f( t)fr( t ' ))  = 2 k B L d ( t '  - t) 

which is the second equality in Eq. (2). 
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Thus we have shown that when the relaxation times for the fluxes are 
short, the equations of extended irreversible thermodynamics become iden- 
tical to the equations of the usual fluctuating irreversible thermodynamics. 

3. AN EXAMPLE 

The results in the previous section are couched in formal terms. In this 
section we examine the special case of diffusion in a ternary solution to 
illustrate more clearly the general result. Consider two solute species A l and 
A 2 diffusing in a solvent S. For such a system there are only two indepen- 
dent diffusion fluxes, (9) which we take to be those of the solute molecules. 
If % and a 2 represent the number densities of A l and A2, then the 
conservation equations are 

a ,~ l /~ t  = - V .j, (21) 

or, Fourier transforming, 

Oal(k, t ) / O t  = - ik.  j,(k, t) (22) 

According to extended irreversible thermodynamics, this equation merely 
expresses the conservation condition and must be supplemented with a 
relaxation equation for the fluxes. In the Onsager theory, on the other 
hand, one simply substitutes the linear relationships (9'17) 

Jl = L t , V ( - / ~ 1 / T )  + Lz2V ( - / * 2 / T )  + Jt (23) 

or 

Jl = -- D l l V ~  - D I 2 V a 2  -I- Jl (24) 

where Jz is the random portion of the diffusion flux, the/ , ' s  are chemical 
potentials, and T is the absolute temperature. 

According to the extended theory in Eqs. (5) and (6), the equations for 
the time derivatives of the flux will involve &l, which is defined by 

~a,(k, t ) / ~ t  = - i t  �9 j,(k, t) --~ &l(k, t) (25) 

The form of the relaxation equations in the extended theory involves the 
average portion of Eq. (23) or (24) and can be written 

3 & l ( k , t ) / a t  = ~/~1 ( k ) [ - k 2 O n m o t m ( k , t ) -  ~nm&m(k, t )]  (26) 

where repeated indices are to be summed over. In principle the relaxation 
time matrix ~ can be wave-vector dependent and its off-diagonal elements 
will couple the relaxation of the two independent diffusion fluxes. 

For diffusion the order of magnitude of difference in the relaxation 
time matrices ~, for the fluxes, and - H -  ~, for the extensive variables, as 



Fluctuating versus "Extended" Irreversible Thermodynamics 493 

defined in Eqs. (6) are easily estimated. The diagonal elements of - H - l in 
Eq. (26) will have the form (k2D) T M  1. To estimate the relaxation time, take a 
wave vector in the upper limit of the hydrodynamic regime, i.e., k = 
10%m -1. Using a typical solution phase diffusion constant D = 10 -5 
cm2/sec, one finds that the relaxation time for the density modes is longer 
than 10 .5 sec. An estimate of the relaxation time ~" for the fluxes can be 
gotten from the Fokker-Planck equation. The standard analysis (23~ shows 
that Fick's law is valid as long as t>> mD/kBT= ,r, with m the molecular 
mass. Using the same value of D and m = 4 • 10 .22 g gives ~ = 10-13 sec, 
the order of a collision time in solution. Thus one has the clear separation 
of time scales required for the result proven in Section 2. Consequently, for 
macroscopic time and distance scales the extended irreversible thermody- 
namic description of diffusion reduces to the usual fluctuating thermody- 
namic description. 

4. CRITIQUE OF THE EXTENDED THEORIES 

In view of the rapid time scale on which the fluxes relax it is clear that 
the extended theory of irreversible thermodynamics has a different charac- 
ter than the usual theory. Indeed, the result in Section 2 shows that the 
rapid processes involving flux relaxation reduce to fluctuations in the usual 
theory of irreversible thermodynamics. The significant difference between 
the two theories is that the fluctuations in the extended theory have a 
memory dictated by the lifetime of the relaxation processes governing the 
fluxes. In the usual theory this lifetime is zero and the fluctuations are 
Markovian. 

The investigation of non-Markovian effects for macroscopic relaxation 
processes has been actively pursued for several decades. (~s'21'2%2a~ Indeed, 
several of the generalized hydrodynamics theories (2s'26)2 explicitly introduce 
the fluxes as macroscopic variables and, additionally, keep memory effects 
in the flux relaxation equations. In what sense, then, are the extended 
irreversible thermodynamic theories different from theories of memory 
effects based on the work of Zwanzig, Mori, and others? 

The chief difference is that the extended theories try to retain a 
thermodynamic character by introducing an entropy function that depends 
on the fluxes. Futhermore, instead of using a Hamiltonian mechanics to 
generate kinetic equations, the extended theories of irreversible thermody- 
namics seek to generate the relaxation equations solely on the basis of 
macroscopic arguments. These arguments generally commence with the 

2 For a review of generalized hydrodynamics, see Ref. 27. 
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entropy function and the so-called extended Gibbs relationship, (5-7) 

dS OS ) (27) 
dt  , 

in which the fluxes &j are explicitly included as thermodynamic variables. 
The entropy production based on (27) is assumed to be positive, and linear 
(or even nonlinear) relaxation laws are constructed for the fluxes. Several 
schemes for this sort of extended irreversible thermodynamics have been 
proposed.(1-7) 

The chief justification for this sort of reasoning goes back to work by 
Mfiller (1) who utilized Grad's 13-moment method (14) for solving the 
Boltzmann equation. Recently Mfiller's analysis has been improved, (6) but 
the spirit remains the same: Namely, Boltzmann's H function is used to 
give a natural expression for the entropy of a nonequilibrium state. Assum- 
ing that the phase space distribution function depends explicitly on the 
average mass, energy, and momentum densities and their average fluxes 
(the 13 moments) gives a definite expression for the extended Gibbs 
relationship in Eq. (27). Relaxation equations for the fluxes are then 
derived from the collision operator. Under simplifying assumptions this 
procedure recovers the viscoelastic relaxation effects envisaged by Maxwell 
as well as comparable effects pointed out by Grad (14) and Cattaneo. (2~ 

Thus the basic thrust of extended irreversible thermodynamics is to 
develop a set of thermodynamic-like postulates which describe the state of 
a system using more than the extensive variables. Such an approach 
appears to us to be redundant and it is unclear whether or not it can 
achieve the same generality as approaches which focus on the conserved 
variables. Two examples illustrate these concerns. First, consider the usual 
linear theory of fluctuating hydrodynamics, (12'28'29) which is a particular 
case of the Onsager theory. This theory is useful for describing light 
scattering experiments and in its spatially nonlocal form describes space- 
time correlation functions down to a distance scale of a few molecular 
diameters. (3~ However, because of its hydrodynamic character the theory 
is incapable of describing free streaming and collision sphere boundary 
effects. Nonetheless, fluctuating hydrodynamics is simply a contracted 
Markovian version of a collisional theory based on the Boltzmann or 
Enskog equations. (12'16'3~) Either of these equations are special cases of the 
canonical dissipation equations (17) and, consequently, can be treated as the 
fluctuating thermodynamic theory of particle numbers in phase space. (16) 
These particle numbers are extensive variables and so no extension of 
thermodynamic reasoning is needed to construct the fluctuating Boltzmann 
or Enskog equations. Indeed, this is a particular case of the hierarchy point 
of view (12) which is fundamental in keeping the usual thermodynamic point 
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of view intact. This point of view, incidentally, is successful in going 
beyond fluctuating hydrodynamics and gives agreement with neutron scat- 
tering experiments in gases (32~ and liquids. (33) 

Our second example of concern with the reasoning of extended irre- 
versible thermodynamics is that it does not produce an exact result for the 
correlations of the fluxes at equilibrium. In other words, it does not yield an 
exact expression for 

(~,(0)~j(0)) (28) 

in analogy to the exact expression f34) 

o~ = < at(O)aj(O) ) = - k~ ( ~2S / OaOa ) O ' (29) 

Indeed the justification for Eq. (29) comes from equilibrium statistical 
mechanics, which shows that Eq. (29) is exact in the thermodynamic 
limit. (35~ Further equilibrium statistical mechanics yields the Einstein for- 
mula for the probability density in the thermodynamic limit (3s) 

W(a)  =[(2~r) 'de toe] l /2exp[-aroe- la /2]  (30) 

Reasoning by analogy, but without a similar basis in statistical me- 
chanics, a version of the Einstein formula has been proposed (5~ which 
involves the extended flux dependent entropy, S(a,~i). For the heat flux 
vector, q, this formula yields (5~ 

(qi(0)~(0)) = ()~T2kB/r)diy (31) 

where ~" is the Maxwell-Cattaneo relaxation time and )~ is the thermal 
conductivity. Clearly the right-hand side of this equation is based on a 
model of the relaxation process for the heat flux and, as such, cannot be 
exact. Indeed any treatment of flux correlations in the equilibrium ensem- 
ble must be based on nonequilibrium statistical mechanics, which at 
present contains mostly formal or model-dependent results. Indeed, as we 
showed in Section 2, Zwanzig's exact result in Eq. (18) reduces to Eq. (31) 
[cf. Eq. (20)] only when the flux-flux correlation function relaxes exponen- 
tially in the limit as r ~  0. Thus the extended thermodynamic reasoning 
seems to be only approximate in this case. 

These criticisms of the extended irreversible thermodynamic theories 
should not be construed as criticisms of the use of fluxes as variables in 
extended kinetic or generalized hydrodynamic descriptions. Indeed, for 
polymeric materials these viscoelastic effects are the origin of many inter- 
esting phenomena. (36) Also computer dynamics calculations are capable of 
observing relaxation effects on the collisional time scale, and by using lasers 
collision time scale experiments can be performed now in the laboratory. 
Based on the 13-moment method, it seems natural to view the use of 
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relaxation equations for the fluxes as methodology in solving the usual 
irreversible thermodynamic equations at the Boltzmann level. When 
thought of in this fashion, there is no need to introduce an extension of 
irreversible thermodynamic principles. Certainly until the extended theories 
can produce results which are characterized by the generality of Eq. (29), 
they cannot claim to provide a real extension of irreversible thermody- 
namic reasoning, even when restricted to near equilibrium situations. 
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